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Abstract

In this paper we study the Foldy–Wouthuysen transformation for a
pseudoclassical particle with anomalous magnetic moment in an external
classical stationary electromagnetic field. We show that the transformation
can be expressed in a closed form for neutral particles in purely electrostatic
fields and for neutral and charged particles in external magnetostatic fields.
The explicit expressions of the diagonalized Hamiltonians are calculated.

PACS numbers: 03.65.Db, 03.65.Sq

1. Introduction

In past years Grassmann variables proved a very useful instrument to describe pseudoclassical
spinning relativistic particles and superparticles and to investigate the properties of their
interactions. Many applications were made to electromagnetic couplings [1–7], and to
interactions of more general nature as, for instance, gauge [8–11] and gravitational fields [12–
14]. All these models were first connected with properties emerging from string theory and later
on became interesting in themselves. Their quantum structure was thoroughly investigated
and, in the framework of electromagnetic interactions, the Foldy–Wouthuysen transformation
(hereafter FWT) in the presence of a stationary magnetic field was determined [15]. The
method to reach this result was the usual one, based on a graded canonical transformation
[16] which reduces the wave equation to a representation where the Hamiltonian is an even
matrix, in the typical form of a square-root operator containing both kinetic and interaction
energies. More refined results were then obtained when the external fields were taken in
the form of plane waves. In this case, in analogy with well-established results [17], it
was proven by path integral [18–22] and by canonical theory [23, 24] that the semi-classical
approximation reproduced the exact quantum propagator. The description of spinning particles
was finally generalized by allowing for the presence of anomalous magnetic moment, first
introduced in [25] and subsequently in [26–28], all these treatments leading to the same first
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class Dirac constraints and hence to the same wave equation. More recently, by using this
approach, we considered the quantization of a spinning particle with anomalous magnetic
moment in the field of an electromagnetic plane wave [24], generalizing the results obtained
in [22]. We found that the semi-classical approximation is no longer exact, but for some
particular cases, due to the effects arising from the interference of the anomalous magnetic
moment with the electric charge that requires the presence of a T-ordered product in the
quantum propagator.

The purpose of this work is to extend the FWT to a pseudoclassical spinning particle with
anomalous magnetic moment in a classical stationary electromagnetic field, thus completing
the research begun in [15] for the usual spinning particle. We are particularly interested in
studying the cases in which the result can be expressed in a closed form. These turn out to
be the following: (a) a neutral particle in a stationary electric field; (b) a neutral particle in a
stationary magnetic field; (c) a charged particle in a stationary magnetic field. Observe that all
the external electromagnetic fields we deal with, as well as the gauge and gravitational fields
that appear in all the quoted papers, are strictly classical and the description of the matter
is done in a one-particle first-quantized framework [29, 30]. The technique that yields the
results is not so different from the one we used, for instance, in [24]. A crucial point that
distinguishes this paper from our previous ones, however, is the need to exploit two possible
different ways of realizing the quantization of the Dirac pseudoclassical brackets: in fact these
representations of the Clifford algebra, coming from the quantization of the pseudoclassical
variables, give rise to two different expressions for the Dirac equation, intertwined by a Pauli–
Gursey unitary transformation [19, 31], that allow us to get more leisurely the exact form for
the three different interacting cases quoted above.

The content of this paper can be summarized as follows. In section 2 we briefly recall
the quantization scheme of the pseudoclassical particle with anomalous magnetic moment:
we write the singular Lagrangian, the Dirac constraints and their corresponding operator form
leading to the wave equation. We then formulate the FWT problem and we consider its general
features. In section 3 we present a detailed discussion of the results concerning the three cases
in which the transformation can be expressed in a closed form.

2. The general setting of the FWT for the spinning particle with anomalous magnetic

moment

For the sake of completeness in this section we briefly summarize our notations and we report
the Dirac constraints leading to the canonical quantization of the pseudoclassical particle with
anomalous magnetic moment. The details can be found in [24, 25]. With the usual conventions
for the metric tensor and for the gamma matrices [29], in a unit system with h̄ = c = 1, the
Lagrangian we start with is [25]

L(xμ, ẋμ, ξμ, ξ̇μ, ξ5, ξ̇5) = − i

2
(ξ · ξ̇ ) − i

2
ξ5ξ̇5 − q(ẋ · A)

−
[
m2 − i

(
q +

eμ

2

)
Fμνξ

μξν − e2μ2

16m2
FμνFρσ ξμξνξρξσ

]1/2

×
[(

ẋμ − i

(
m +

ieμ

4m
Fλνξ

λξν

)−1

ξμ

(
ξ̇5 − eμ

2m
ẋρFρσ ξσ

))2]1/2

. (2.1)

Here xμ are the usual space-time coordinates and (ξμ, ξ5) are Grassmann variables related to
the spin structure of the pseudoclassical particle. Moreover μ = −�g = −(g − 2) where g
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is the gyromagnetic factor [29, 30, 32], q is the charge of the particle and e is the electronic
charge, respectively.

The Lagrangian (2.1) is evidently singular and gives rise to the two first class constraints

χD = (	 · ξ) − mξ5 + i
eμ

4m
Fμνξ

μξνξ5,

χ = 	2 − m2 + i
(
q +

eμ

2

)
Fμνξ

μξν + i
eμ

m
	μFμνξ

νξ5 +
e2μ2

16m2
FμνFρσ ξμξνξρξσ ,

where the kinetic momentum 	 is related to the canonical momentum p by

	μ = pμ − qAμ (2.2)

and the second class constraints have already been accounted for. Their algebra

{χD, χD} = iχ, {χD, χ} = 0, {χ, χ} = 0

is determined by the nonvanishing Dirac brackets of the pseudoclassical variables,

{xμ, pν} = −ημν {ξμ, ξν} = iημν, {ξ5, ξ5} = −i,

that, upon quantization, give rise to the graded commutators

[xμ, pν] = −iημν, {ξ̂ μ, ξ̂ ν}+ = −ημν, {ξ̂5, ξ̂5}+ = 1. (2.3)

It was previously observed [2, 19, 22] that the anti-commutation relations (2.3) of the odd
operators ξ̂ μ, ξ̂5, can be satisfied by two different realizations

ξ̂ μ = 2−1/2γ5γ
μ, ξ̂5 = 2−1/2γ5 (2.4)

ξ̂ μ = 2−1/2iγ μ, ξ̂5 = 2−1/2γ5 (2.5)

hereby referred to as (D) and (PG), respectively. It was also observed, [19], that these two
realizations are connected by a Pauli–Gursey transformation, i.e. a conjugation by the matrix
exp[i(π/4)γ5]. However, contrary to almost all the previously quoted papers, where only the
realization (D) was effectively used, in the following both (D) and (PG) will appear, since the
different cases we will examine are treated more efficiently if the appropriate choice is made.
An observation is however in order. When applying the Pauli–Gursey transformation to the
Dirac equation, both the Hamiltonian and the spinor wavefunctions are transformed. Since
we will use the standard representation of the γ -matrices where γ 0 = β is diagonal and γ5 is
not, [29], the components of the original spinor will mix, so that some care must be used when
performing the non-relativistic limit on the transformed Hamiltonian: the real advantage of
going to the (PG) realization is actually apparent mainly when the FWT can be given a closed
form. We will give further comments for each case we examine in the following.

The explicit form of the quantized Dirac Hamiltonian in the (D)realization (2.4) takes the
form

Ĥ D = (−→α · −→
	) + qA0 + βm +

eμ

8m
βσμνF

μν, (2.6)

where β = γ 0,−→α = γ 0−→γ and σμν = (i/2)[γμ, γν], [29]. In the (PG) realization (2.5) we
have, instead,

Ĥ PG = (−→α · −→
	) + qA0 − iβγ5m − ieμ

8m
βγ5σμνF

μν (2.7)

and we can easily verify that

eiπγ5/4Ĥ D e−iπγ5/4 = Ĥ PG.
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In view of the discussion of the FWT, we find it useful to separate, both in Ĥ D and in Ĥ PG,
the even and the odd terms. We therefore write

Ĥ D = Ĥ even
D + Ĥ odd

D , Ĥ PG = Ĥ even
PG + Ĥ odd

PG , (2.8)

and making explicit the electromagnetic tensor Fμν in (2.6) and (2.7) we obtain

Ĥ even
D = qA0 + βm − eμ

4m
β(

−→
� · −→

B ) Ĥ odd
D = (−→α · −→

	) +
ieμ

4m
β(−→α · −→

E ) (2.9)

Ĥ even
PG = qA0 +

eμ

4m
βγ5(

−→α · −→
E ) Ĥ odd

PG = (−→α · −→
	) − imβγ5 +

ieμ

4m
βγ5(

−→
� · −→

B ),

(2.10)

where the spatial spin vector
−→
� , defined by the relation σ ij = εijk�k , can also be written as−→

� = γ5
−→α .

It is well known that in the simplest systems, as for example the Dirac-free particle and
the Dirac particle with no anomalous magnetic moment in a magnetic field, the FWT depends
upon the odd part of the Hamiltonian that, in the two mentioned cases, is given by the kinetic
part (−→α ·−→	) and anti-commutes with the even part βm. We will follow a similar method also
for the more general interacting case with the additional difficulties we will discuss later on.
We therefore present an extremely rapid summary of the successive steps necessary to get the
result in these two simplest cases and we give the explicit forms of the operator exp[βO] that
defines the FWT, O being the odd part of the Hamiltonian operator [29, 33]. Starting from the
non-interacting case, obtained by (2.6) and (2.7) with μ = q = 0, it can be seen that for the
first realization (2.4) of the Clifford algebra, the unitary transformation is generated by

exp[iŜD] = exp[β(−→α · −→p )θ(|−→p |)] where θ(|−→p |) = 1

2|−→p | arctan
|−→p |
m

. (2.11)

The FW transformed free-Hamiltonian operator is then [29]

˜̂H D = eβ(−→α ·−→p )θ(|−→p |)((−→α · −→p ) + βm) e−β(−→α ·−→p )θ(|−→p |) = β[−→p 2 + m2]1/2. (2.12)

For the realization (2.5) of the Clifford algebra the whole free-Hamiltonian Ĥ PG is odd, as
the mass term −imβγ5 is itself odd (and still anti-commuting with (−→α · −→	)). The expression
(2.11) has therefore to be substituted by

exp[iŜPG] = exp[β((−→α · −→p ) − imβγ5)φ(|−→p |)] where φ(|−→p |) = π

4[−→p 2 + m2]1/2
.

As expected, the transformed free-Hamiltonian reads again ˜̂H PG = β[−→p 2 + m2]1/2.
The Hamiltonian operators for the pseudoclassical particle interacting with a stationary

magnetic field in the two representations are obtained from (2.9) and (2.10) by choosing
μ = 0, A0 = 0 and

−→
A = −→

A (−→x ). The computations are somewhat more cumbersome, but
can still be managed and give a result in a closed form. We introduce

�̂ = −{(−̂→ξ · −→
	), (

−̂→
ξ · −→

	)}+ = 1

2
{(−→γ · −→

	), (−→γ · −→
	)}+ = −

(−→
	

2
+

q

2
σ ijF ij

)
and by quantizing the graded Jacobi identity∑

cyclic

(−1)d�dn{v�, {vm, vn}} = 0,
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where vi is a generic dynamical variable of degree di = 0, 1 according to its parity in the
Grassmann algebra, we easily verify that [β(−→α · −→

	), �̂] = 0. By a direct calculation it can
then be proved that the similarity transformation of Ĥ D with

exp[iŜD] = exp[β(−→α · −→
	)θ(�̂)], where θ(�̂) = 1

2
√

�̂
arctan

√
�̂

m
(2.13)

gives the Hamiltonian [15]˜̂H D = β[
−→
	

2 − q(
−→
� · −→

B ) + m2]1/2. (2.14)

Note that (2.14) is the same expression obtained for a stationary and uniform magnetic field,
as found in [34]. The previous result can also be deduced by transforming (2.10), where now
the complete Hamiltonian is odd, by

exp[iŜPG] = exp[β((−→α · −→
	) − imβγ5)φ(�̂)], where φ(�̂) = π

4

1√
−�̂ + m2

(2.15)

and in this case the algebra is simpler as the whole Hamiltonian is odd, so that O = Ĥ PG.
The difficulties arising in the general interacting case, both for Ĥ D and Ĥ PG, are that the

kinetic part does not anti-commute with the even terms qA0, β(
−→
� ·−→B ), βγ5(

−→α ·−→E ) and that
the interaction parts contain terms of both even and odd parities. Starting with these premises,
in the next section we are going to examine the cases in which explicit results can be reached.

3. Discussion of the results

We begin our report on the cases admitting a complete and closed solution by examining a
neutral particle, q = 0. The Hamiltonian operators in the two different representations are
given by (2.8)–(2.10) and both of them involve even and odd terms in the interaction part. We
therefore proceed by separating the electrostatic from the magnetostatic interaction.

(a) Starting from the Hamiltonian Ĥ D in (2.8) and (2.9), we first consider q = 0 and
−→
B = 0

and we investigate the interaction of the anomalous magnetic moment with the remaining
electric field. We have

Ĥ D = O + E, O = (−→α · −→
P ), E = βm, where

−→
P = −→p − ieμ

4m
β
−→
E .

(3.1)

In (3.1) we have denoted by O, E the odd and the even terms, respectively. We then see
that the structure is extremely similar to that of the free particle, but for the translation of
the momentum by a factor linear in the electric field. Moreover, since

[Pi, Pj ] = − eμ

4m
β

(
∂Ej

∂xi

− ∂Ei

∂xj

)

for a conservative field,
−→∇ × −→

E = 0, our procedure could be considered a canonical
transformation with respect to the free case. In the general case, the FWT will be generated
by an exponential exp{βOϕ}, where ϕ is a parameter to be determined in order to obtain
a totally even-transformed Hamiltonian. Observe now that a straightforward calculation
gives the form of the even term

(βO)2 = −O2 = −
[
−→p 2 +

(
eμ

4m

−→
E

)2

− eμ

4m
β(

−→∇ · −→
E +

−→
� · (

−→
E × −→p − −→p × −→

E ))

]
. (3.2)

5
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Moreover, by parity properties,

[βO, β]+ = [βO,O]+ = 0, [βO,O2]− = 0, (3.3)

it is easily seen that

(βO)3 = −βO3, (βO)4 = O4, (βO)5 = βO5 and so on. (3.4)

We therefore find˜̂H D = eβOϕ[(−→α · −→
	) + βm] e−βOϕ = [(−→α · −→

	) + βm] e−2βOϕ.

Due to (3.3) and (3.4) the exponential is easily calculated and yields

e−2βOϕ = cos(2
√
O2ϕ) − βO√

O2
sin(2

√
O2ϕ) (3.5)

so that, expanding the expression of the transformed Hamiltonian, we find

˜̂H D = O
[

cos(2
√
O2ϕ) − m√

O2
sin(2

√
O2ϕ)

]

+ β

[√
O2 sin(2

√
O2ϕ) + m cos(2

√
O2ϕ)

]
.

Finally, by choosing

ϕ = 1

2
√
O2

arctan

(√
O2

m

)
,

we find a completely even-transformed Hamiltonian, whose final form is

˜̂H D = β[O2 + m2]1/2 = β

[
−→p 2 + m2 +

(
eμ

4m

−→
E

)2

− eμ

4m
β((

−→∇ · −→
E ) + (

−→
� · (

−→
E × −→p − −→p × −→

E )))

]1/2

. (3.6)

A similar result has been obtained in a perturbative framework of the FWT in [35–37].
(b) We next assume q = 0 and �E = 0, looking for the magnetostatic interaction of the

anomalous moment. The Dirac Hamiltonian is

Ĥ D = (−→α · −→p ) + βm − eμ

4m
β(

−→
� · −→

B )

and in it the interaction term is even. If, however, we consider the same problem in the
Pauli–Gursey representation, we have a completely odd Hamiltonian

Ĥ PG = (−→α · −→p ) − imβγ5 +
ieμ

4m
β(−→α · −→

B ). (3.7)

The term of (3.7) representing the interaction with the magnetic field has the same structure
of interaction term with the electric field of equation (3.1), (ieμ)/(4m)β(−→α · −→

E ) →
(ieμ)/(4m)β(−→α · −→

B ), so that we expect to find a similar result for the diagonalized
Hamiltonian, with the obvious replacement of �E with �B. From the algebraic point of view
an analogous result was obtained in [35] when the contribution of EDM was considered.
Since the choice of a particular representation is irrelevant for the exact form of the FWT,
it is certainly more convenient to start with O = Ĥ PG given in (3.7). As usual we will
consider a similarity transformation generated by exp(βOϕ), looking, as we previously
did, whether we can also satisfy the further requirements [β, ϕ]− = [O, ϕ]− = 0: if this
is the case, we will be able to give a closed form to the FWT and to the transformed
Hamiltonian as we did in the previous paragraph. We will give an a posteriori solution to
these questions.

6
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In analogy with (3.2) we first calculate the even term

(βO)2 = −O2 = −
[
−→p 2 + m2 +

(
eμ

4m

−→
B

)2

− eμ

2
(
−→
� · −→

B )

− eμ

4m
β(

−→
� · (

−→
B × −→p − −→p × −→

B ))

]
(3.8)

and the relations (3.3) hold in this case too. Therefore,

˜̂H PG = eβOϕĤ PG e−βOϕ =
(

(−→α · −→p ) − imβγ5 +
ieμ

4m
β(−→α · −→

B )

)
e−2βOϕ

and since exp(−2βOϕ) is again given by (3.5), if we choose

ϕ = π

4

1√
O2

(3.9)

we find an explicit form for the FW transformed Hamiltonian, that results in

˜̂H PG = β
√
O2 = β

[
−→p 2 + m2 +

(
eμ

4m

−→
B

)2

− eμ

2
(
−→
� · −→

B )

− eμ

4m
β(

−→
� · (

−→
B × −→p − −→p × −→

B ))

]1/2

. (3.10)

One can then verify that all of our working hypotheses are satisfied. Our result agrees
completely with the result given in [32]. We also observe that the energy eigenvalues that
can be obtained from (3.10) after some straightforward algebra are coincident with those
obtained in [38]: the presence of all the three terms containing the magnetic field �B in
(3.10) is obviously essential for the final result.

(c) We finally turn to the case q �= 0. A closed form for the FW transformed Hamiltonian
can be found only when A0 = 0. Since, moreover, we consider a stationary case,
∂
−→
A (t)/∂t = 0, our assumption corresponds to a vanishing electric field. This is very

reasonable from a physical point of view, as a non-vanishing
−→
E could lead to the pair

production phenomenon [39, 40]: indeed it is well known that when
−→
E �= 0, even for a

vanishing magnetic field and an anomalous magnetic moment, the FWT cannot be put in
a closed form. The model we now discuss can thus describe a proton in a magnetostatic
field. We report here the two representations of the Hamiltonian of the system, namely,

Ĥ D = β(−→γ · (−→p − q
−→
A ) + m) − eμ

4m
β(

−→
� · −→

B )

Ĥ PG = β−→γ · (−→p − q
−→
A ) − imβγ5 +

ieμ

4m
(−→γ · −→

B ).
(3.11)

As in item (b) the second relation in (3.11) shows that the Hamiltonian in the Pauli–
Gursey representation is completely odd (i.e., Ĥ PG = O) and will be more conveniently
used for the FWT. The observations made in (b) concerning the original Dirac and the
Pauli–Gursey transformed Hamiltonian apply in the present case too and we can again
establish a relation similar to (3.2) and (3.8), that reads

(βO)2 = −O2 = −
[−→

	
2

+ m2 +

(
eμ

4m

−→
B

)2

−
(

q +
eμ

2

)
(
−→
� · −→

B )

− eμ

4m
β(

−→
� · (

−→
B × −→

	 − −→
	 × −→

B ))

]
,

7
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where 	μ is the canonical momentum (2.2). The relations (3.3) and (3.4) hold in this
case too, so that we can directly write

˜̂H PG = Ĥ PG e−2βOϕ (3.12)

and with the choice (3.9) for the angle ϕ we get the final form of the transformed
Hamiltonian

˜̂H PG = β
√
O2 = β

[−→
	

2
+ m2 +

(
eμ

4m

−→
B

)2

−
(

q +
eμ

2

)
(
−→
� · −→

B )

− eμ

4m
β(

−→
� · (

−→
B × −→

	 − −→
	 × −→

B ))

]1/2

. (3.13)

We can conclude that the analysis of the ‘pseudoclassical mechanics’ is quite useful in the
derivation of new results. In the present case, in fact, we have analyzed the possible different
representations of the Clifford algebra arising from the quantization of the Grassmann variables
and we have shown how to extend in a very simple way the quantum unitary transformation
which diagonalizes the Dirac Hamiltonian for a particle with anomalous magnetic moment
interacting with a classical stationary non-homogeneous electromagnetic field.
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